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Mode-coupling theory for molecular liquids based on the interaction-site model

Song-Ho Chong1 and Fumio Hirata2,*
1Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

2Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
~Received 19 May 1998!

We develop a microscopic theory for dynamics of molecular liquids that is based on the interaction-site
model for polyatomic fluids, the projection-operator formalism of Zwanzig and Mori, and the mode-coupling
theory. Closed nonlinear equations are derived for a self-consistent treatment of density propagation in a
classical polyatomic liquid, which enable one to calculate dynamic structure factors provided the equilibrium
structure functions of liquids are known.@S1063-651X~98!04911-3#

PACS number~s!: 61.25.2f
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I. INTRODUCTION

In a recent paper@1#, hereafter referred to as paper I, w
presented a microscopic theory for dynamics of polyatom
fluids based on the projection-operator formalism of Zwa
zig and Mori @2–4# and on the interaction-site model fo
molecular liquids@5,6#. An approximation scheme is deve
oped for memory functions appearing in the generaliz
Langevin equation by assuming an exponential form
memory kernels and by extending the method of Lovesey
monatomic liquids@7,8# to polyatomic fluids. Numerical re
sults were obtained for collective and single-particle site-
density correlation functions and longitudinal current spec
of a model diatomic liquid. We also discussed how the lo
gitudinal current spectra, the wave-vector-dependent den
of states of the system, can be interpreted in terms of col
tive excitations that originate from the translational and
tational motions of constituent molecules.

Although a number of essential features concerning
namics of molecular liquids can be well captured by o
theory of paper I, an intense investigation through exp
mental, theoretical, and molecular-dynamics simulation st
ies for simple liquids has revealed that the microscopic p
cesses underlying various time-dependent phenomena ca
be fully accounted for by a simplified memory-function a
proach@9–11#. In particular, the assumption that the decay
memory kernels is ruled by a simple exponential-type rel
ation must be significantly revised in view of the results
the kinetic framework developed for dense liquids@12–20#.
This motivated us to further improve the theory for dynam
of polyatomic fluids presented in paper I.

In the kinetic framework based on the phase-space
scription, it has been shown that memory functions gener
consist of their fast and slow portions: the fast portion is d
to the rapidly decaying ‘‘binary collision’’ contributions
whereas the slow portion stems from correlated collisio
effects. The ‘‘slowness’’ of the latter is based on the noti
that any correlation effect between collisions, which is e
pected to appear at high-density liquids, requires some fi
time to build up. Since a proper treatment of correlated c
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lisional effects is important in describing the dense-liqu
dynamics, the primary interest in this framework is put
the slow portion of memory functions.

In the formulation of the slow portion of memory kernel
the concept of ‘‘couplings to relevant decay channels’’ h
played a major role@19,20#. Typically, the relevant decay
channels are provided by a bilinear mode combination
quasiconserved~or hydrodynamic! variables, and memory
kernels are expressed as a superposition of nonlinear m
contributions. Another important feature in this context
that the memory functions for some dynamical quantit
that we wish to determine depend on the same dynam
quantities: the overall framework has the structure of a s
consistent approach, and it enables one to calculate ti
correlation functions provided the equilibrium structu
functions of liquids are known.

It is well established that the functional form for the slo
portion of memory functions can be obtained also by a dir
mode-coupling approach@9–11#. In view of this, we develop
in the present paper a mode-coupling theory for molecu
liquids based on the interaction-site model so that an imp
tant contribution from the slow portion of memory kerne
can be incorporated in describing the dynamics of po
atomic fluids. However, since we do not attempt to make
full phase-space description based on the phase-space
sity, and since memory kernels obtained from the dir
mode-coupling approach are valid only in the long-time
gion, we have to separately treat the fast portion of mem
kernels so that the short-time regime can also be adequa
described. This will be done by exploiting the ‘‘frequenc
sum rules,’’ and the fast and slow portions of memory k
nels will be connected according to the prescription
Sjögren @19,20#.

The rest of the paper is organized as follows. In the f
lowing section, after giving basic definitions, the generaliz
Langevin equations for collective and single-particle site-s
density correlation functions are presented based on
projection-operator formalism of Zwanzig and Mori and o
the interaction-site model for molecular liquids. A form
definition of memory kernels is given in terms of project
random forces. In Sec. III, we develop an approximati
scheme for memory kernels of molecular liquids based
the frequency sum rules and on the mode-coupling appro
This provides closed nonlinear equations for a self-consis
:
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treatment of density propagation in polyatomic fluids. S
tion IV concludes the paper. Some rather technical detail
evaluating memory kernels under the mode-coupling
proach are given in Appendixes A and B.

II. GENERALIZED LANGEVIN EQUATIONS

In this section, generalized Langevin equations~GLE’s!
for density-correlation functions are presented based on
interaction-site representation of a molecular liqu
Throughout the paper, we consider a homogeneous and
tropic fluid comprised ofN molecules in a volumeV at the
inverse temperatureb51/kBT, and the thermodynamic limi
with densityr5N/V is implied.

A. Basic definitions

We begin with the definition of two basic dynamical va
ablesdr and j . dr is a row vector whose component is
local density of atom~site! a at time t in Fourierk space,

dra~k,t ![(
i

eik•r i
a

~ t !, ~1!

wherer i
a(t) specifies the location ofa atom in thei th mol-

ecule at timet. Hereafter, the Greek subscripts and sup
scripts refer to the interaction sites of a molecule and
roman letters label the molecules unless specified otherw
j is a row vector of which each component is a longitudin
current density,

j a~k,t ![(
i

v i ,z
a ~ t !eik•r i

a
~ t !, ~2!

where the wave vectork is chosen such that it is along thez
axis of the space-fixed laboratory frame, andv i ,z

a (t) denotes
z component of the velocity ofa atom in thei th molecule at
time t. These two vectors satisfy the following continui
equation:

dṙ~k,t !5 ik j ~k,t !, ~3!

where the dot denotes the time derivative.
The site-site intermediate scattering function matrix is

fined in terms ofdr as

F~k,t ![„dr~k!,dr~k,t !…. ~4!

~The absence of any indication for timet in a dynamical
variable means that the latter is evaluated att50.! Here the
inner product of two row vectorsA1 andA2 is defined as the
canonical ensemble average,

~A1 ,A2![
1

N
^A1

†A2&, ~5!

where A1
† denotes a column vector adjoint toA1 , and the

factor 1/N is a matter of convention. Similarly, we define th
matrix of the site-site longitudinal current correlation fun
tions by

J~k,t !5„j ~k!,j ~k,t !…. ~6!
-
in
-

he
.
o-

-
e
e.
l

-

The matrices of the site-site dynamic structure factors
the longitudinal current spectra are respectively defined
the time Fourier transforms of the corresponding tim
correlation functions:

S~k,v![E
2`

`

dteivtF~k,t !, ~7!

CL~k,v![E
2`

`

dteivtJ~k,t !. ~8!

The continuity equation, Eq.~3!, implies that these two ma
trices are connected through the relation

CL~k,v!5
v2

k2 S~k,v!. ~9!

The initial value ofF(k,t) is the matrix of the site-site
static structure factors

F~k,0![x~k!5w~k!1rh~k!, ~10!

where w(k) and h(k) are the intramolecular and intermo
lecular total correlation function matrices defined by

wab~k![
1

N K (
i

e2 ik•r i
a
eik•r i

bL , ~11!

rhab~k![
1

N K (
i

(
j Þ i

e2 ik•r i
a
eik•r j

bL . ~12!

Equation~11! can be further decomposed into

wab~k!5dab1~12dab!sab~k!, ~13!

and for a rigid molecule,sab(k) takes the form

sab~k!5 j 0~klab!, ~14!

wherej 0(x) is the zeroth-order spherical Bessel function a
l ab denotes the ‘‘bond’’ length betweena andb sites. The
inverse of the matrixx(k), which is required later, can b
related to the matrix of the site-site direct correlation fun
tions c(k), based on the reference interaction-site mo
~RISM! equation~often referred to as the site-site Ornstei
Zernike equation! @5,6#,

h~k!5w~k!c~k!w~k!1w~k!c~k!rh~k!, ~15!

and is given by

x21~k!5w21~k!2rc~k!. ~16!

The initial value ofJ(k,t) can be discussed as follows
Having assumed the molecule to be rigid, the velocity oa
atom consists of translational and rotational contributions

v i ,z
a 5v i ,z

C 1@vi3dr i
Ca#z , ~17!

wherev i ,z
C representsz component of the center-of-mass v

locity of the i th molecule,vi its angular velocity, anddr i
Ca

the vector joining the center-of-mass anda atom. Due to the
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6190 PRE 58SONG-HO CHONG AND FUMIO HIRATA
statistical independence of translational and rotational
locities at the same time, the initial value ofJ(k,t) has a
generic form@1,21,22#

J~k,0![J~k!5Jtrans~k!1Jrot~k!. ~18!

It is readily accomplished to evaluate elements ofJtrans(k),
due to the statistical independence of the translational vel
ties and coordinates:

Jab
trans~k!5

kBT

M
wab~k!, ~19!

whereM denotes the total mass of the molecule and we h
used Eq.~11!. Elements ofJrot(k), on the other hand, depen
on the molecular model. It is rather straightforward to obt
elements ofJrot(k) having a definite molecular model, an
those for a water molecule@21,22# and a diatomic molecule
@1# have been presented elsewhere.

B. GLE for collective density correlation function

Combining our primary dynamical variablesdr and j to
form a new row vector

C~k,t ![„dr~k,t ! j ~k,t !…, ~20!

we introduce the following projection operatorP, which acts
on a row vectorX:

PX[C~C,C!21~C,X!. ~21!

The standard procedure of the Zwanzig-Mori formalis
leads to the following GLE in the time domain@9–11,23#:

F̈~k,t !1^vk
2&F~k,t !1E

0

t

dtK ~k,t2t!Ḟ~k,t!50, ~22!

where ^vk
2& denotes the normalized second frequency m

ment matrix ofS(k,v) and is given by@1#

^vk
2&5k2J~k!x21~k!. ~23!

For later convenience, we introduce^vk
n&, the normalized

nth frequency moment matrix ofS(k,v), defined through
the following relations:

vk
n[

1

2p E
2`

`

dvvnS~k,v!5~21!n/2F dn

dtn
F~k,t !G

t508
~24!

^vk
n&[vk

nF 1

2p E
2`

`

dvS~k,v!G21

5vk
nx21~k!, ~25!

where we have used the inverse relation of Eq.~7! and the
definition of x(k), Eq. ~10!. K (k,t) in Eq. ~22! is the
memory-function matrix~or simply called the memory ker
nel! whose formal expression reads

K ~k,t ![„R~k!,exp~ iQLt !R~k!…J21~k!, ~26!

whereQ[12P, and R~k! is the fluctuating random force
vector defined by
-

i-

e

n

-

R~k![ j ~k!2 ikdr~k!x21~k!J~k!. ~27!

C. GLE for single-particle density-correlation function

We next consider single-particle counterparts. The te
‘‘particle’’ in this paper refers to one molecule as a who
and not to an individual atom that constitutes the molecu
Our basic dynamical variables in this case are density
longitudinal current density of an arbitrarily chosen tagg
particle, drs and j s, whose components are respective
given by

dra
s ~k,t !5eik•r1

a
~ t !, ~28!

j a
s ~k,t !5v1,z

a ~ t !eik•r1
a

~ t !. ~29!

The self-part of the site-site intermediate scattering fu
tion matrix is defined by

Fs~k,t ![„drs~k!,drs~k,t !…s , ~30!

where the inner product in the single-particle variable cas
given by

~A1
s ,A2

s!s[^A1
s†A2

s&. ~31!

Note the absence of the factor of 1/N compared to Eq.~5!.
The initial value ofFs(k,t) reads@see Eq.~11!#

Fs~k,0!5w~k!. ~32!

The self-part of the site-site dynamic structure factors, a
called the incoherent dynamic structure factors,Sab

s (k,v),
are defined as the time Fourier transform ofFab

s (k,t) as in
Eq. ~7!. The unnormalized and normalized frequency m
ment matrices ofSs(k,v) are also defined as in Eqs.~24! and
~25!:

vk,s
n [

1

2p E
2`

`

dvvnSs~k,v!5~21!n/2F dn

dtn
Fs~k,t !G

t508
~33!

^vk,s
n &[vk,s

n F 1

2p E
2`

`

dvSs~k,v!G21

5vk,s
n w21~k!.

~34!

Finally, GLE for Fs(k,t) reads

F̈s~k,t !1^vk,s
2 &Fs~k,t !1E

0

t

dtK s~k,t2t!Ḟs~k,t!50,

~35!

in which

^vk,s
2 &5k2J~k!w21~k!, ~36!

K s~k,t !5„Rs~k!,exp~ iQLt !Rs~k!…sJ
21~k!, ~37!

Rs~k!5 j s~k!2 ikdrs~k!w21~k!J~k!. ~38!

The appearance ofJ(k), which is common to the collective
variable case, is due to the fact thatJ(k) is essentially a
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PRE 58 6191MODE-COUPLING THEORY FOR MOLECULAR LIQUIDS . . .
single-particle quantity since the velocities of different m
ecules at the same time are statistically independent.

III. MODE-COUPLING THEORY

The Zwanzig-Mori formalism that leads to GLE’s pre
sented in the last section is, in a sense, merely a for
rephrasing of the equation of motion~Liouville equation! for
a dynamical variable, sayC(t),

]

]t
C~ t !5 iLC~ t !, ~39!

in a different language, shifting the difficulty in solving dy
namical problems to that in evaluating the memory kernel
the merits of the new formulation may not be apparent at
stage. However, the establishment of the alternative fra
work is strongly biased by a number of physical argumen
allowing the practical approximation schemes for t
memory kernel to solve dynamical problems. The bases
such approximation schemes, which are capable of trea
even high-density liquids, were set during the 1970s and
early 1980s by several researchers@12–20#, and our argu-
ment here is an extension of their work to molecular fluid

A starting point of our argument is that the memory ke
nel K (k,t) consists of its fast and slow portions:

K ~k,t !5K fast~k,t !1K slow~k,t !. ~40!

The fast portion is due to the rapidly decaying binary co
sion contributions~associated with fast collisional events!,
and the slow one stems from correlated collisional effe
We discuss the fast and slow portions of the memory ke
separately in the following. For the treatment of the latt
we employ the mode-coupling approach.

A. Fast portion of the memory kernel

It is reasonable to expect that the initial decay of the f
memory kernel is dominated by its fast portion. Indeed
has been shown that at sufficiently short times the effect
nonbinary ~slow! contributions are at least of the ordert4

@19,20#. As a result, up to the order oft2 in the short-time
regime, the full and the fast portion of the memory kern
coincide, and the initial decay of the fast portion can
deduced by analyzing the short-time behavior of the
memory kernel.

At sufficiently short times, the full memory kernelK (k,t)
can be expanded as

K ~k,t !5K ~k,0!1
t2

2! F d2

dt2
K ~k,t !G

t50

1¯

5@ I2t2t22~k!1¯#K ~k,0!, ~41!

where only even powers of time appear due to the even c
acter ofK (k,t), and we have defined a matrix,

t22~k![2 1
2 K̈ ~k,0!K21~k,0!. ~42!

By differentiating Eq.~22! with respect tot repeatedly and
settingt50, it follows
al

o
is
e-
s,

of
ng
e

.
-

s.
el
,

l
t
of

l
e
ll

r-

K ~k,0!5^vk
4&^vk

2&212^vk
2&, ~43!

2K̈ ~k,0!5^vk
6&^vk

2&212~^vk
4&^vk

2&21!2, ~44!

in terms of normalized frequency moment matrices defin
in Eq. ~25!.

As mentioned above, up to the order oft2 in the short-
time regime, the full and the fast portion of the memo
kernel coincide. This fact is conveniently exploited by a
suming that the overall time dependence of the fast por
can be written in terms of the shape functiong(x) that de-
cays rapidly and satisfiesg(x)'12x2 for small x. Often
adopted areg(x)5exp(2x2) and g(x)5sech2(x). Thus, we
approximate the fast portion of the memory kernelK (k,t) as

K fast~k,t !'g@ tt21~k!#K ~k,0!, ~45!

where the functiong of a matrix is defined in terms of its
Taylor-series expansion. IfU(k) is a matrix that diagonalizes
t22(k), it follows

U21~k!t22~k!U~k!5diag„ta
22~k!…, ~46!

whereta
22(k)’s denote the eigenvalues of the matrixt22(k),

and diag~ ! represents a diagonal matrix. Then the fast p
tion of the memory kernel can be written as

K fast~k,t !5U~k!@diag~g„t/ta~k!…!#U21~k!K ~k,0!.
~47!

B. Slow portion of the memory kernel

We next investigate the long-lasting tails of the memo
kernel exploiting the mode-coupling approach. The ba
idea behind the mode-coupling theory is that the fluctuat
of a given dynamical variable decays, at intermediate a
long times, predominantly into pairs of hydrodynamic mod
associated with quasiconserved dynamical variables.
possible ‘‘decay channels’’ of a fluctuation are determin
by ‘‘selection rules’’ based, for example, on time-revers
symmetry or on physical considerations.

It is reasonable to expect that the decay of the mem
kernel at intermediate and long times is dominated by th
mode correlations that have the longest relaxation times.
sluggishness of the structural relaxation processes typica
dense liquids suggests that the slow decay of the mem
kernel at long times is basically due to couplings to wav
vector-dependent density modes of the form

Alm~q,p![drl~q!drm~p!. ~48!

Then, the slow portion of the memory kernel can be e
pressed as a sum of products of the wave-vector-depen
density modes provided a decoupling~or factorization! ap-
proximation is made~see below!.

The simplest way to extract the dominant slow portion
the memory kernel is to introduce another projection ope
tor P2 that projects any variable onto the subspace span
by Alm(q,p). Translational invariance of the system implie
that the onlyAlm(q,p), whose inner products with a dy
namical variableX(k) are nonzero, are of the form

Alm~q,k2q!5drl~q!drm~k2q!, ~49!
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for variousq’s, and we define the second projection opera
P2 in terms ofAlm as follows:

P2X~k![ 1
2 (

q
(

l,m,l8,m8
Alm„Alm ,Al8m8)

21~Al8m8 ,X~k!…,

~50!

where the factor of12 is to avoid the double counting. From
here on, in order to simplify the notation,Alm(q,k2q) will
be simply denoted asAlm , and we shall often adopt th
convention of writing the wave vectors as if they were d
crete. Conversion prescription to the continuous wave v
tors is as follows:

dk,k8→
~2p!3

V
d~k2k8!, ~51!

(
k
→

V

~2p!3 E dk. ~52!

In Eq. ~50!, the inverse is defined by

(
l8,m8

~Alm ,Al8m8!~Al8m8 ,Al9m9!
215dll9dmm9 . ~53!

It is readily verified thatP2 defined above is idempotent an
Hermitian.

The first approximation of the mode-coupling treatme
corresponds to replacing the time-evolution opera
exp(iQLt) by its projection on the subspace spanned
Alm :

exp~ iQLt !'P2 exp~ iQLt !P2 . ~54!

At the same time, the anomalous time-propagator exp(iQLt)
in the right-hand side is replaced by the conventional o
the final expression being

exp~ iQLt !'P2 exp~ iLt !P2 . ~55!

Under these approximations, the memory kernel in Eq.~26!
reads

K MCT~k,t !5„P2R~k!,exp~ iLt !P2R~k!…J21~k!. ~56!

The second approximation usually made in the mo
coupling approach is to assume that the four-variable co
lation functions are factorized into products of two-variab
correlation functions. For example, the denominator of E
~50! reads

~Alm ,Al8m8!5
1

N
^drl* ~q!drm* ~k2q!drl8~q!drm8~k2q!&

'
1

N
^drl* ~q!drl8~q!&

3^drm* ~k2q!drm8~k2q!&

5Nxll8~q!xmm8~k2q!, ~57!

and it follows from Eq.~53! that
r

-
c-

t
r
y

e,

-
e-

.

~Alm ,Al8m8!
215

1

N
@x21~q!#ll8@x21~k2q!#mm8 .

~58!

Now let us evaluate the elements of the memory kern
Eq. ~56!. To this end, the explicit expression for the eleme
of the projected random force,

P2„R~k!…a5P2„j ~k!…a2 ikP2„dr~k!x21~k!J~k!…a ,
~59!

is required. Evaluation of each term in the above equatio
somewhat involved, and it is presented in Appendix B. Fr
the result of Appendix B, it follows@see Eq.~B12!#

P2„R~k!…a

52
ir

N (
q

(
l,m

qz@wc~q!#mlJam~k!drl~q!drm~k2q!,

~60!

where we have introduced

@wc~q!#lm[(
s

wls~q!csm~q!. ~61!

By substituting Eq.~60! into Eq. ~56! and noting that

^drl* ~q!drm* ~k2q!drl8~q8,t !drm8~k2q8,t !&

'N2Fll8~q,t !Fmm8~k2q,t !dq,q8

1N2Flm8~q,t !Fml8~k2q,t !dq,k2q8 , ~62!

under the factorization approximation, one obtains the f
lowing memory kernel:

@KMCT~k,t !#ab

5
r

~2p!3 (
l,m,n

E dq$qz
2@wc~q!#lm@wc~q!#bn

3Fmn~q,t !Flb~k2q,t !1qz~k2qz!

3@wc~q!#lm@wc~k2q!#bnFmb~q,t !

3Fln~k2q,t !%Jal~k!, ~63!

where we have renamed dummy indices for convenience
an appropriate limit, this expression for molecular liqui
reduces to that for mixtures of simple liquids@24–26#.

At this point, it may be tempting to identify the mode
coupling contribution given by Eq.~63! with the slow por-
tion of the full memory kernel. However, as mentioned e
lier, the slow portion should evolve at the order oft4 in the
short-time regime, and we have to manipulate Eq.~63! in
order to guarantee this feature: this is exactly the extra p
we should pay due to the abandonment of the full pha
space description. Following the work of Sjo¨gren@19,20#, we
introduce the following auxiliary function:

f ab~k,t ![
Fab

0 ~k,t !

Fab
s ~k,t !

, ~64!
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whereFab
0 (k,t) denotes an element of the following inte

mediate scattering function matrix:

F0~k,t ![exp@2 1
2 ^vk,s

2 &t2#w~k!. ~65!

This intermediate scattering function matrix is essentia
that of a noninteracting molecule. It is readily verified th
F0(k,t) and Fs(k,t) coincide up to the order oft2 in the
short-time regime by construction. It is also obvious that
former decays more rapidly than the latter, which has
long-lasting portion~see below!. Thus, the auxiliary function
defined in Eq.~64! satisfies the following relations:

f ab~k,t !51 ~up to the order oft2 for t!1!, ~66!

lim
t→`

f ab~k,t !50. ~67!

It should be also noticed thatf ab(k,t) is symmetric since
Fab

0 (k,t) andFab
s (k,t) are symmetric matrices. By insertin

this auxiliary function into Eq.~63! according to Sjo¨gren’s
prescription, we eventually obtain the slow portion of t
memory kernel that evolves at the order oft4 in the short-
time regime:

@Kslow~k,t !#ab

5
r

~2p!3 (
l,m,n

E dq$qz
2@wc~q!#lm@wc~q!#bn

3@12 f mn~q,t ! f lb~k2q,t !#Fmn~q,t !Flb~k2q,t !

1qz~k2qz!@wc~q!#lm@wc~k2q!#bn

3@12 f mb~q,t ! f ln~k2q,t !#

3Fmb~q,t !Fln~k2q,t !%Jal~k!. ~68!

Numerical results for F(k,t) can be obtained self
consistently by solving Eqs.~22!, ~40!, ~47!, and ~68!, pro-
vided the equilibrium structure functions of liquids a
known.

C. Single-particle variable case

The single-particle counterpart can be obtained by a s
lar procedure. The fast portion of the memory kernelK s(k,t)
reads

K fast
s ~k,t !5Us~k!@diag~g„t/ts,a~k!…!#Us

21~k!K s~k,0!.
~69!

In the above equation,ts,a
22(k)’s are the eigenvalues of th

matrix ts
22(k) defined by

ts
22~k![2 1

2 K̈ s~k,0!@K s~k,0!#21, ~70!

andUs(k) is a matrix that diagonalizests
22(k). The matrices

appearing in the right-hand side of Eq.~70! can be ex-
pressed, as in Eqs.~43! and ~44!, as

K s~k,0!5^vk,s
4 &^vk,s

2 &212^vk,s
2 &, ~71!

2K̈ s~k,0!5^vk,s
6 &^vk,s

2 &212~^vk,s
4 &^vk,s

2 &21!2, ~72!
y
t

e
e

i-

in terms of the normalized frequency moment matrices
Ss(k,w) defined in Eq.~34!.

To obtain the slow portion ofK s(k,t), we introduce the
following second projection operator for the single-partic
variable case:

P2
sX~k![(

q
(

l,m,l8,m8
Alm

s ~Alm
s ,Al8m8

s
!s

21
„Al8m8

s ,X~k!…s ,

~73!

whereAlm
s is defined by

Alm
s [drl

s~q!drm~k2q!. ~74!

Note the absence of the factor1
2 in the above equation com

pared to Eq.~50!. The inverse (Alm
s ,Al8m8

s )s
21 is defined

similarly to Eq.~53!, and in the present case, it follows und
the factorization approximation that

~Alm
s ,Al8m8

s
!s

215
1

N
@w21~q!#ll8@x21~k2q!#mm8 .

~75!

Using the projection operatorP2
s , the memory kernel reads

as in Eq.~56!,

K MCT
s ~k,t !5„P2

sRs~k!,exp~ iLt !P2
sRs~k!…sJ

21~k!.
~76!

The evaluation of the elements of the projected rand
forceP2

s
„Rs(k)…a can be performed by a similar procedure

that employed in Appendix B, the final result being

P2
s
„Rs~k!…a52

ir

N (
q

(
l,m

~k2qz!@wc~k2q!#lm

3Jal~k!drl
s~q!drm~k2q!. ~77!

By substituting this equation into Eq.~76! and adopting the
factorization approximation for four-variable correlatio
functions, one obtains the following memory kernel und
the mode-coupling approach:

@KMCT
s ~k,t !#ab5

r

~2p!3 (
l,m,n

E dq~k2qz!
2@wc~k2q!#lm

3@wc~k2q!#bnFlb
s ~q,t !

3Fmn~k2q,t !Jal~k!. ~78!

In order to obtain the slow portion of the memory kern
which evolves at the order oft4 in the short-time regime, we
manipulate this expression as in Eq.~68! using the same
auxiliary function defined by Eq.~64!:

@Kslow
s ~k,t !#ab

5
r

~2p!3 (
l,m,n

E dq~k2qz!
2@wc~k2q!#lm

3@wc~k2q!#bn@12 f lb~q,t ! f mn~k2q,t !#Flb
s ~q,t !

3Fmn~k2q,t !Jal~k!. ~79!
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Numerical results for the single-particleFs(k,t) can be ob-
tained self-consistently by solving Eqs.~35!, ~40!, ~69!, and
~79!.

IV. CONCLUDING REMARKS

In this paper, we derived closed nonlinear equations fo
self-consistent treatment of density propagation in a class
polyatomic liquid based on the projection-operator form
ism of Zwanzig and Mori and on the mode-coupling theo
A distinctive feature of our formulation is that it is based
the interaction-site model for molecular liquids, and is c
pable of treating the general class of polyatomic fluids wi
out too much difficulty. This is in contrast to other theori
for dynamics of molecular liquids based on the rotation
invariant expansions@27,28#, in which theories become
much more complicated when there is no symmetry in
molecule.

Numerical results forF(k,t) can be obtained by solving
Eqs.~22!, ~40!, ~47!, and~68!, and corresponding results fo
the self part can be evaluated similarly. We have calcula
site-site intermediate scattering functions, longitudinal c
rent spectra, velocity autocorrelation functions and th
spectra for model diatomic liquid based on the present
mulation, and found fairly good agreement with molecul
dynamics simulation results. These calculations will be
ported in a forthcoming paper.

Although our primary aim in the present paper is to d
velop a molecular theory for dynamics of the ordinary liqu
state, our formalism based on the mode-coupling theory
also be used to investigate the nature of the supercooled
and the glass transition of molecular liquids. The research
this direction is one of our concerns in the future study.
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APPENDIX A: APPROXIMATIONS
FOR TRIPLET CORRELATIONS

In this appendix, we develop approximation schemes
triplet correlations that are required in evaluating t
memory kernel under the mode-coupling approach. It sho
be remembered that, in the present paper, the greek
scripts and superscripts refer to the interaction sites of a m
ecule, and the roman letters label the molecules. It is
sumed in the following thatqÞ0, k2qÞ0, andkÞ0, and
the thermodynamic limit is also anticipated.

1. Convolution approximation

We investigate here how to approximate triplet~three-
site! correlations,
a
al
-
.

-
-

-

a

d
-
ir
r-
-
-

-

n
ate
or

r.

o-
-
r

r

ld
b-
l-
s-

„drl~q!drm~k2q!,drn~k!…

5
1

N
^drl* ~q!drm* ~k2q!drn~k!&, ~A1!

in terms of two-site correlation functionswlm(k) and
hlm(k). To this end, we generalize the convolution appro
mation, employed in mode-coupling approaches for sim
liquids @29# and mixtures of simple liquids@24#, to poly-
atomic liquids. We first note that the right-hand side of E
~A1! can be rearranged into

^drl* ~q!drm* ~k2q!drn~k!&

5K (
i

e2 iq•r i
l

(
j

e2 i ~k2q!•r j
m

(
l

eik•r l
nL ~A2!

5~ i 5 j 5 l !1~ i 5 j Þ l !1~ j 5 lÞ i !

1~ l 5 iÞ j !1~ iÞ j Þ l !. ~A3!

The term (i 5 j 5 l ) symbolically denotes the case whe
i 5 j 5 l in Eq. ~A2!, and others have similar meanings exce
for ( iÞ j Þ l ), which summarizes the case whereiÞ j , j
Þ l , and lÞ i .

The term (i 5 j 5 l ) may be called intramolecular triple
correlation function since only one molecule is involved. T
terms (i 5 j Þ l ), ( j 5 lÞ i ), and (l 5 iÞ j ) will be referred to
as intracoupled intermolecular triplet correlation functio
where two different molecules are concerned, one of wh
offers two sites. We call the final term (iÞ j Þ l ) intermo-
lecular triplet correlation function to which three differe
molecules contribute. An approximation scheme for ea
class of triplet correlation functions is separately investiga
in the following.

a. „ i 5 j 5 l … term in Eq. (A2)

We first consider the (i 5 j 5 l ) term in Eq.~A2!, which
can be further decomposed into

K (
i

e2 iq•r i
l
e2 i ~k2q!•r i

m
eik•r i

nL
5N^e2 iq•r1

l
e2 i ~k2q!•r1

m
eik•r1

n

&

5N@~l5m5n!1~l5mÞn!1~m5nÞl!

1~n5lÞm!1~lÞmÞn!#. ~A4!

The first four terms are readily evaluated in terms of site-s
correlation functions, the results being

~l5m5n!5dlmdmn , ~A5!

~l5mÞn!5dlms̃mn~k!, ~A6!

where we have defined@see also Eq.~13!#

s̃lm~k![~12dlm!slm~k!. ~A7!

The terms (m5nÞl) and (n5lÞm) have expressions
similar to Eq. ~A6!. The last term in Eq.~A4! is a triplet
correlation. Defining
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s̃lmn
~3! ~r ,r 8,r 9![~12dlm!~12dmn!~12dln!^d~r2r1

l!

3d~r 82r1
m!d~r 92r1

n!&, ~A8!

the last term in Eq.~A4! can be expressed as

~lÞmÞn!5E dreik•rE dr 8e2 iq•r8

3E dr 9s̃nlm
~3! ~r1r 9,r 81r 9,r 9!

5VE drE dr 8eik•re2 iq•r8s̃nlm
~3! ~r ,r 8!,

~A9!

where we have noticed the translational invariance of
system.

To approximate this in terms of two-site correlation fun
tions, we introduce the following convolution approxim
tion:

s̃nlm
~3! ~r ,r 8!' s̃nm~r !s̃lm~r 8!s̃nl~ ur2r 8u!

2 t̃nm~r ! t̃lm~r 8! t̃nl~ ur2r 8u!

1(
s

1

V E dr 9 t̃ms~r 9! t̃ls~ ur 82r 9u!

3 t̃ns~ ur2r 9u!, ~A10!

where we have defined

t̃lm~r ![ s̃lm~r !2
1

V
. ~A11!

Note that the triplet correlation function under this appro
mation satisfies the relation

s̃lm~ ur2r 8u!5VE dr 9s̃lmn
~3! ~r ,r 8,r 9!, ~A12!

and similar relations with subscripts or variables of integ
tion appropriately interchanged. Then, it follows from Eq
~A9! and ~A10! that

~lÞmÞn!5 t̃lm~q! t̃nm~k!1 t̃nl~q! t̃nm~k2q!

1 t̃lm~k2q! t̃nl~k!

1(
s

t̃ls~q! t̃ms~k2q! t̃ns~k!. ~A13!

By noting that

t̃lm~k!5 s̃lm~k!, ~A14!

in k space whenkÞ0, substituting Eqs.~A5!, ~A6!, and
~A13! into Eq. ~A4! yields
e

-

-
.

~ i 5 j 5 l !5K (
i

e2 iq•r i
l
e2 i ~k2q!•r i

m
eik•r i

nL
'N(

s
wls~q!wms~k2q!wns~k!, ~A15!

where we have used Eq.~13!.

b. „ i 5 jÞ l … term in Eq. (A2)

We next consider the (i 5 j Þ l ) term in Eq. ~A2!. The
terms represented by (j 5 lÞ i ) and (l 5 iÞ j ) can be treated
in a similar manner. The (i 5 j Þ l ) term can be further de
composed into

K (
i

e2 iq•r i
l
e2 i ~k2q!•r i

m

(
lÞ i

eik•r l
nL

5dlmK (
i

(
lÞ i

e2 ik•r i
l
eik•r l

nL 1~12dlm!

3K (
i

e2 iq•r i
l
e2 i ~k2q!•r i

m

(
lÞ i

eik•r l
nL

5~l5m!1~lÞm!. ~A16!

The term (l5m) is easily evaluated using Eq.~12!:

~l5m!5Ndlmrhln~k!. ~A17!

To evaluate the term (lÞm), let us define the following
triplet correlation function:

r2glmn8~3!~r ,r 8,r 9![~12dmn!

3K (
iÞ j

d~r2r i
l!d~r 82r j

m!d~r 92r j
n!L .

~A18!

The underline (mn) emphasizes that these two sites a
within the same molecule, and the factorr2 indicates that
two different molecules are involved here. Then, the sec
term in Eq.~A16! can be written, as in Eq.~A9!, as

~lÞm!5NrE drE dr 8eik•re2 iq•r8gnlm8~3!~r ,r 8!.

~A19!

An approximation of Eq.~A19! in terms of site-site cor-
relation functions can be achieved by introducing the follo
ing convolution approximation:

gnlm8~3!~r ,r 8!'gnm~r !s̃lm~r 8!gnl~ ur2r u8!

2hnm~r ! t̃lm~r 8!hnl~ ur2r 8u!

1(
s

E dr 9 t̃ms~r 9! t̃ls~ ur 82r 9u!hns~ ur2r 9u!.

~A20!

It is readily verified that the triplet correlation function und
this approximation satisfies the sequential conditions
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gnl~ ur2r 8u!5E dr 9gnlm8~3!~r ,r 8,r 9!, ~A21!

s̃lm~ ur 82r 9u!5
r

N21 E drgnlm8~3!~r ,r 8,r 9!. ~A22!

Then, from Eqs.~A19! and ~A20!, it is straightforward to
derive

~lÞm!5NF t̃lm~k2q!rhnl~k!1 t̃lm~q!rhnm~k!

1
r

V
hnl~q!hnm~k2q!

1(
s

t̃ls~q! t̃ms~k2q!rhns~k!G . ~A23!

Substituting Eqs.~A17! and ~A23! into Eq. ~A16! finally
gives

~ i 5 j Þ l !5K (
i

e2 iq•r i
l
e2 i ~k2q!•r i

m

(
lÞ i

eik•r l
nL

'N(
s

wls~q!wms~k2q!rhns~k!, ~A24!

where we have used Eqs.~13! and ~A14!.

c. „ iÞ jÞ l … term in Eq. (A2)

Finally, an approximation for (iÞ j Þ l ) term in Eq.~A2!
is investigated here. For this purpose, the following trip
correlation function is defined:

r3glmn
~3! ~r ,r 8,r 9![K (

i
(
j Þ i

(
lÞ iÞ j

d~r2r i
l!d~r 82r j

m!

3d~r 92r l
n!L , ~A25!

where the factorr3 indicates that three different molecule
are involved. Then, (iÞ j Þ l ) term in Eq.~A2! can be ex-
pressed, as in Eqs.~A9! and ~A19!, as

K (
iÞ j Þ l

e2 iq•r i
l
e2 i ~k2q!•r j

m
eik•r l

nL
5Nr2E drE dr 8eik•re2 iq•r8gnlm

~3! ~r ,r 8!. ~A26!

We introduce the following convolution approximation fo
gnlm

(3) (r ,r 8):
t

gnlm
~3! ~r ,r 8!

'gnm~r !glm~r 8!gnl~ ur2r 8u!2hnm~r !hlm~r 8!

3hnl~ ur2r 8u!1r(
s

E dr 9hms~r 9!hls~ ur 82r 9u!

3hns~ ur2r 9u!1(
s

E dr 9s̃ms~r 9!hls~ ur 82r 9u!

3hns~ ur2r 9u!1(
s

E dr 9hms~r 9!s̃ls~ ur 82r 9u!

3hns~ ur2r 9u!1(
s

E dr 9hms~r 9!hls~ ur 82r 9u!

3 s̃ns~ ur2r 9u!. ~A27!

Notice that the triplet correlation function under this appro
mation satisfies the sequential condition

glm~ ur2r 8u!5
r

N22 E dr 9glmn
~3! ~r ,r 8,r 9!. ~A28!

Then, from Eqs.~A26! and ~A27!, one obtains

~ iÞ j Þ l !5K (
iÞ j Þ l

e2 iq•r i
l
e2 i ~k2q!•r j

m
eik•r l

nL
'N(

s
@wls~q!rhms~k2q!rhns~k!1rhls~q!

3wms~k2q!rhns~k!1rhls~q!rhms~k2q!

3wns~k!1rhls~q!rhms~k2q!rhns~k!#,

~A29!

where Eq.~13! has been used.

d. Summary of Eq. (A2)

Under the convolution approximations discussed in
previous parts, it eventually follows from Eqs.~A3!, ~A15!,
~A24!, and~A29! that

„drl~q!drm~k2q!,drn~k!…

5
1

N
^drl* ~q!drm* ~k2q!drn~k!&

'(
s

xls~q!xms~k2q!xns~k!, ~A30!

where we have used Eq.~10!.

2. Triplet correlations involving velocity fields

This subsection deals with the triplet correlations invo
ing one density and two velocity fields. We first consider t
following triplet correlation:

^drl* ~q! j m* ~k2q! j n~k!&. ~A31!

Due to the statistical independence of the translational
rotational velocities, by employing the notation in Eq.~17!, it
follows that



th

tie

n

c-
nc
v

e
iv
iv
p

r-

n

q

n

of
d

h

the
at

e of
in

PRE 58 6197MODE-COUPLING THEORY FOR MOLECULAR LIQUIDS . . .
^drl* ~q! j m* ~k2q! j n~k!&

5K (
i

e2 iq•r i
l

(
j

~v j ,z
C !2e2 i ~k2q!•r j

m
eik•r j

nL
1K (

i
e2 iq•r i

l

(
j

@vj3dr j
Cm#z

3@vj3dr j
Cn#ze

2 i ~k2q!•r j
m
eik•r j

nL . ~A32!

The first term is readily evaluated, using the results of
convolution approximation, Eqs.~A15! and ~A24!, and not-
ing the statistical independence of the translational veloci
and coordinates, as follows:

K (
i

e2 iq•r i
l

(
j

~v j ,z
C !2e2 i ~k2q!•r j

m
eik•r j

nL
'N(

s
xls~q!wms~k2q!Jns

trans~k!, ~A33!

whereJab
trans(k) is defined in Eq.~19!.

The evaluation of the second term in Eq.~A32! is a non-
trivial problem, and we assume it to have the same functio
form as Eq.~A33!. Then, one has

^drl* ~q! j m* ~k2q! j n~k!&'N(
s

xls~q!wms~k2q!Jns~k!.

~A34!

Expressions for two other similar triplet correlation fun
tions are required in the main text. These correlation fu
tions can be approximated within the same spirit as abo
the final results being

^drl* ~q! j m
s* ~k2q! j n

s~k!&'(
s

xls~q!wms~k2q!Jns~k!,

~A35!

^drl
s* ~q! j m* ~k2q! j n

s~k!&'(
s

wls~q!wms~k2q!Jns~k!.

~A36!

APPENDIX B: EVALUATION OF THE PROJECTED
RANDOM FORCE

In this appendix, we briefly outline the derivation of th
expression for the projected random force for the collect
variable case: the single-particle counterpart can be der
by a similar procedure. For simplicity, we shall often ado
in the following the notation ofAlm defined by Eq.~49!.
~Note thatAlm is not symmetric with respect to the inte
change of subscripts. However, when the wave vectorsq and
k2q are interchanged, so are the subscripts.! Also, we may
rearrange or rename dummy indices arbitrarily without a
indication.

Let us evaluate the first term in the right-hand side of E
~59!:
e

s

al

-
e,

e
ed
t

y

.

P2 j̇ a~k!5 1
2 (

q
(

l,m,l8,m8
Alm~Alm ,Al8m8!

21
„Al8m8 , j̇ a~k!….

~B1!

The numerator can be expressed as

„drl~q!drm~k2q!, j̇ a~k!…

52
1

N
^dṙl* ~q!drm* ~k2q! j a~k!&

2
1

N
^drl* ~q!dṙm* ~k2q! j a~k!&

5 iqz

1

N
^drm* ~k2q! j l* ~q! j a~k!&

1 i ~k2qz!
1

N
^drl* ~q! j m* ~k2q! j a~k!&,

~B2!

where we have used the well-known relatio
^AḂ&52^ȦB&, and the continuity equation Eq.~3!. The
evaluation of the above equation requires the knowledge
the triplet correlation functions involving one density an
two longitudinal velocity fields, an approximation for whic
is presented in the Appendix A. Using Eq.~A34!, it follows
that

„drl~q!drm~k2q!, j̇ a~k!…

' iqz(
s

xms~k2q!wls~q!Jas~k!

1 i ~k2qz!(
s

xls~q!wms~k2q!Jas~k!.

~B3!

By substituting this into Eq.~B1! and using Eq.~58!, one
obtains

P2 j̇ a~k!5
i

2N (
q

(
l,m,s

$qzAlm@x21~q!#lswsm~q!Jam~k!

1~k2qz!Alm@x21~k2q!#ms

3wsl~k2q!Jal~k!%. ~B4!

It can be easily shown that the first and second term in
above equation are equal to each other, and it follows th

P2 j̇ a~k!5
i

N (
q

(
l,m,s

qzAlm@x21~q!#lswsm~q!Jam~k!.

~B5!

We next evaluate the second term in the right-hand sid
Eq. ~59! under the convolution approximation developed
the Appendix A:

P2„dr~k!x21~k!J~k!…a

5(
g,d

~P2drg~k!…@x21~k!#gdJda~k!. ~B6!

It follows from Eqs.~58! and ~A30! that



-
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P2drg~k!5
1

2 (
q

(
l,m,l8,m8

Alm~Alm ,Al8,m8!
21

3~drl8~q!drm8„k2q!,drg~k!…

5
1

2N (
q

(
l

Allxgl~k!. ~B7!

Substituting this into Eq.~B6! yields

P2„dr~k!x21~k!J~k!…a5
1

2N (
q

(
l

AllJal~k!. ~B8!

It is more convenient to rewrite this equation in the follow
ing form:

ikP2„dr~k!x21~k!J~k!…a

5
i

2N (
q

(
l

$qz1~k2qz!%AllJal~k!

5
i

N (
q

(
l

qzAllJal~k!

5
i

N (
q

(
l,m

qzAlmJam~k!dlm . ~B9!
Finally, we combine Eqs.~B5! and ~B9! to obtain the
expression forP2„R(k)…a:

P2„R~k!…a5
i

N (
q

(
l,m

qzAlmJam~k!

3S (
s

@x21~q!#lswsm~q!2dlmD . ~B10!

The quantities in the parentheses read, using Eq.~16!,

(
s

@x21~q!#lswsm~q!2dlm52r@wc~q!#ml ,

~B11!

where the matrix element@wc(k)#lm is defined in Eq.~61!.
Substituting this into Eq.~B10! eventually gives

P2„R~k!…a52
ir

N (
q

(
l,m

qz@wc~q!#ml

3Jam~k!drl~q!drm~k2q!. ~B12!
v.
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