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Mode-coupling theory for molecular liquids based on the interaction-site model
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We develop a microscopic theory for dynamics of molecular liquids that is based on the interaction-site
model for polyatomic fluids, the projection-operator formalism of Zwanzig and Mori, and the mode-coupling
theory. Closed nonlinear equations are derived for a self-consistent treatment of density propagation in a
classical polyatomic liquid, which enable one to calculate dynamic structure factors provided the equilibrium
structure functions of liquids are knowf51063-651X98)04911-3

PACS numbds): 61.25~f

I. INTRODUCTION lisional effects is important in describing the dense-liquid
dynamics, the primary interest in this framework is put on
In a recent paperl], hereafter referred to as paper |, we the slow portion of memory functions.
presented a microscopic theory for dynamics of polyatomic In the formulation of the slow portion of memory kernels,
fluids based on the projection-operator formalism of Zwan-the concept of “couplings to relevant decay channels” has
zig and Mori[2—-4] and on the interaction-site model for played a major rolg19,2Q. Typically, the relevant decay
molecular liquids[5,6]. An approximation scheme is devel- channels are provided by a bilinear mode combination of
oped for memory functions appearing in the generalizedjuasiconservedor hydrodynamig variables, and memory
Langevin equation by assuming an exponential form forkernels are expressed as a superposition of nonlinear mode
memory kernels and by extending the method of Lovesey focontributions. Another important feature in this context is
monatomic liquidg7,8] to polyatomic fluids. Numerical re- that the memory functions for some dynamical quantities
sults were obtained for collective and single-particle site-sitehat we wish to determine depend on the same dynamical
density correlation functions and longitudinal current spectrajuantities: the overall framework has the structure of a self-
of a model diatomic liquid. We also discussed how the lon-consistent approach, and it enables one to calculate time-
gitudinal current spectra, the wave-vector-dependent densityorrelation functions provided the equilibrium structure
of states of the system, can be interpreted in terms of colledunctions of liquids are known.
tive excitations that originate from the translational and ro- It is well established that the functional form for the slow
tational motions of constituent molecules. portion of memory functions can be obtained also by a direct
Although a number of essential features concerning dymode-coupling approad®—11]. In view of this, we develop
namics of molecular liquids can be well captured by ourin the present paper a mode-coupling theory for molecular
theory of paper I, an intense investigation through experidiquids based on the interaction-site model so that an impor-
mental, theoretical, and molecular-dynamics simulation studtant contribution from the slow portion of memory kernels
ies for simple liquids has revealed that the microscopic proean be incorporated in describing the dynamics of poly-
cesses underlying various time-dependent phenomena canraabmic fluids. However, since we do not attempt to make the
be fully accounted for by a simplified memory-function ap- full phase-space description based on the phase-space den-
proach[9—11]. In particular, the assumption that the decay ofsity, and since memory kernels obtained from the direct
memory kernels is ruled by a simple exponential-type relaximode-coupling approach are valid only in the long-time re-
ation must be significantly revised in view of the results ofgion, we have to separately treat the fast portion of memory
the kinetic framework developed for dense liquid2-20. kernels so that the short-time regime can also be adequately
This motivated us to further improve the theory for dynamicsdescribed. This will be done by exploiting the “frequency
of polyatomic fluids presented in paper I. sum rules,” and the fast and slow portions of memory ker-
In the kinetic framework based on the phase-space desels will be connected according to the prescription by
scription, it has been shown that memory functions generalljogren[19,20.
consist of their fast and slow portions: the fast portion is due The rest of the paper is organized as follows. In the fol-
to the rapidly decaying “binary collision” contributions, lowing section, after giving basic definitions, the generalized
whereas the slow portion stems from correlated collisionalangevin equations for collective and single-patrticle site-site
effects. The “slowness” of the latter is based on the notiondensity correlation functions are presented based on the
that any correlation effect between collisions, which is ex-projection-operator formalism of Zwanzig and Mori and on
pected to appear at high-density liquids, requires some finitehe interaction-site model for molecular liquids. A formal
time to build up. Since a proper treatment of correlated coldefinition of memory kernels is given in terms of projected
random forces. In Sec. Ill, we develop an approximation
scheme for memory kernels of molecular liquids based on
*Author to whom correspondence should be addressed. FAXthe frequency sum rules and on the mode-coupling approach.
+81-564-53-4660. Electronic address: hirata@ims.ac.jp This provides closed nonlinear equations for a self-consistent
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treatment of density propagation in polyatomic fluids. Sec-The matrices of the site-site dynamic structure factors and
tion IV concludes the paper. Some rather technical details ithe longitudinal current spectra are respectively defined as
evaluating memory kernels under the mode-coupling apthe time Fourier transforms of the corresponding time-

proach are given in Appendixes A and B. correlation functions:

Il. GENERALIZED LANGEVIN EQUATIONS S(k w)EJx dtetF(k 1) @

In this section, generalized Langevin equati¢@4.E’s)
for density-correlation functions are presented based on the o
interaction-site representation of a molecular liquid. CL(k,w)EJ dte'“ta(k,t). (8)
Throughout the paper, we consider a homogeneous and iso- -
tropic fluid comprised olN molecules in a volumé& at the
inverse temperatur8=1/kgT, and the thermodynamic limit
with densityp=N/V is implied.

The continuity equation, Ed3), implies that these two ma-
trices are connected through the relation

2
w
A. Basic definitions C.(kw)= v Sk, w). 9

We begin with the definition of two basic dynamical vari-
ablesdp andj. dp is a row vector whose component is a  The initial value ofF(k,t) is the matrix of the site-site
local density of aton{site) « at timet in Fourierk space, static structure factors

— F(k,0)= x(k)=w(k)+ ph(k), 10
Spa(k,)=2 ekt (1) (k,0)=x(k)=w(k)+ ph(k) (10)
| wherew(k) and h(k) are the intramolecular and intermo-

wherer?(t) specifies the location af atom in theith mol- lecular total correlation function matrices defined by

ecule at timet. Hereafter, the Greek subscripts and super- 1

scripts refer to the interaction sites of a molecule and the W,p(K)=— <2 g ikrigikri > (12)
roman letters label the molecules unless specified otherwise. N

j is a row vector of which each component is a longitudinal

current density, 1
Y SE < >

ja(k,t)EEi vﬁz(t)eik.rf‘m, 2)

> e—lk r |kr > (12)
j#i

Equation(11) can be further decomposed into

where the wave vectde is chosen such that it is along tae Wap(K)=8apt (1= Sap)Sap(k), (13
axis of the space-fixed laboratory frame, arftj(t) denotes
z component of the velocity ok atom in theith molecule at
time t: These two vectors satisfy the following continuity Sas(K)=jo(Klug), (14)
equation:

and for a rigid molecules,,z(k) takes the form

wherejy(x) is the zeroth-order spherical Bessel function and
| .5 denotes the “bond” length betweesm and g sites. The
inverse of the matrixy(k), which is required later, can be
related to the matrix of the site-site direct correlation func-
tions c(k), based on the reference interaction-site model
(RISM) equation(often referred to as the site-site Ornstein-

F(k,t)=(8p(K), 3p(K,1)). 4) Zernike equation[5,6],
h(k) =w(k)c(k)w(k) +w(k)c(k)ph(k), (15

p(k,t)=ikj(k,t), (3

where the dot denotes the time derivative.
The site-site intermediate scattering function matrix is de-
fined in terms ofép as

(The absence of any indication for tintein a dynamical
variable means that the latter is evaluated=a0.) Here the

and is given b
inner product of two row vector&, andA, is defined as the g y

canonical ensemble average, x YK =w(k)— pc(k). (16)
1 The initial value ofJ(k,t) can be discussed as follows
= (AT ) .
(A1,A2)= N (A1A2), ®) Having assumed the molecule to be rigid, the velocityrof

atom consists of translational and rotational contributions:
WhereAI denotes a column vector adjoint #o;, and the

) : 0 : _.cC c
factor 1N is a matter of convention. Similarly, we define the v, =vi e X o], 17
matrix of the site-site longitudinal current correlation func-

tions by wherevI , representgz component of the center-of-mass ve-

locity of theith molecule,w; its angular velocity, anoBr
J(k,t)=((k),j(k,1)). (6) the vector joining the center-of-mass amdtom. Due to the



6190 SONG-HO CHONG AND FUMIO HIRATA PRE 58

statistical independence of translational and rotational ve-
locities at the same time, the initial value afk,t) has a
generic form[1,21,27

R(K)=j(k)—ikap(k)x~ (k) I(K). (27)

C. GLE for single-particle density-correlation function

J(k,00=J(k)=J3""Yk) +JY(k). (18 We next consider single-particle counterparts. The term

) ) ) “particle” in this paper refers to one molecule as a whole,
It is readily accomplished to evaluate elements)§'{k),  and not to an individual atom that constitutes the molecule.
due to the statistical independence of the translational veloci; pasic dynamical variables in this case are density and
ties and coordinates: longitudinal current density of an arbitrarily chosen tagged
particle, 6p° and j5, whose components are respectively

trans( k)= aﬁ( k), (19 given by
s _ aikerf
whereM denotes the total mass of the molecule and we have op,(k,t)=e""1t, (28
used Eq(11). Elements 00™(k), on the other hand, depend s . ik ro(o)
on the molecular model. It is rather straightforward to obtain Jalk ) =07, (1) 1t (29)

elements of)(k) having a definite molecular model, and

those for a water molecul®1,24 and a diatomic molecule The self-part of the site-site intermediate scattering func-

[1] have been presented elsewhere.

B. GLE for collective density correlation function

Combining our primary dynamical variabléi andj to
form a new row vector
C(k,t)=(p(k,t) j(k1)), (20)
we introduce the following projection operatBr which acts
on a row vectorxX:

PX=C(C,C) (C,X). (22)

tion matrix is defined by

Fo(k,t)=(8p%(k), dp°(Kk,1))s, (30)
where the inner product in the single-particle variable case is
given by

(A3.AD)=(AT'A3). (3D
Note the absence of the factor oNLtompared to Eq(5).
The initial value ofF5(k,t) reads[see Eq(11)]

F3(k,00=w(k). (32

The standard procedure of the Zwanzig-Mori formalismThe self-part of the site-site dynamic structure factors, also

leads to the following GLE in the time domajf-11,23:

F(k,t) + (@) F(K,t) + fthK(k,t— 7F(k,7)=0, (22)
0

called the incoherent dynamic structure factcﬁgﬁ(k,w),

are defined as the time Fourier transformF@fﬁ(k,t) asin
Eqg. (7). The unnormalized and normalized frequency mo-
ment matrices 08°(k,w) are also defined as in Eq24) and
(25):

where (w?) denotes the normalized second frequency mo-

ment matrix ofS(k,w) and is given by1]

(@) =K2J(k) x " 1(k). (23)

For later convenience, we introduges), the normalized
nth frequency moment matrix o®(k,w), defined through

the following relations:

(= [ dursi e =(-0 o Fco|
t=0

(24)
-1

_“ifwd Sko)| =afx XK, (25
P w , W = o X y

()=

where we have used the inverse relation of &f.and the
definition of yx(k), Eg. (10). K(k,t) in Eg. (22) is the

memory-function matrixor simply called the memory ker-

nel) whose formal expression reads

K(k,t)=(R(k),expi QLt)R(k))I L(k), (26)

n

n _ 1 * ngs n/2 d FS
wkys=§ ﬂcdww S(k,w)=(—-1) a0 F(k,t)

t=0’

(33

— 1 % -1
<wE,S>EwE,S|:E f_ deS(k,a))} :‘"E,sw_l(k)-
(34
Finally, GLE for F3(k,t) reads

FS(k, 1) + (@ O F3(k,t) + ftdrKs(k,t— 7 FS(k,7)=0,
0

(39
in which
(@ =KAI(k)w*(k), (36)
K3(k,t) = (R%(k), exp(i QL)R(k))I~H(k),  (37)
Re(k) =j*(k) —ik dp*(K)w~*(k) (k). (39)

where 9=1—-7P, andR(k) is the fluctuating random force The appearance df(k), which is common to the collective

vector defined by

variable case, is due to the fact thitk) is essentially a



PRE 58 MODE-COUPLING THEORY FOR MOLECULAR LIQUILCs . .. 6191

single-particle quantity since the velocities of different mol- K (k,0) =<wﬁ><wi>_l—<wﬁ>' (43
ecules at the same time are statistically independent.
—K(k,0)= (@) {wi) "= (wp)(w) H% (44
Ill. MODE-COUPLING THEORY
) ) ) in terms of normalized frequency moment matrices defined
The Zwanzig-Mori formalism that leads to GLE's pre- jp Eq. (25).
sented in the last section is, in a sense, merely a formal As mentioned above, up to the order t3fin the short-
rephrasing of the equation of motighiouville equation for  {jme regime, the full and the fast portion of the memory

a dynamical variable, sag(t), kernel coincide. This fact is conveniently exploited by as-
5 suming that the overall time dependence of the fast portion
Z Cc(t)=iLCc(), 39 can be written in terms of the shape functig(x) that de-
at ® (1) 39 cays rapidly and satisfieg(x)~1—x? for small x. Often

. . - - _ . adopted arey(x) =exp(—x?) and g(x) =secK(x). Thus, we
in a different language, shifting the difficulty in solving dy- approximate the fast portion of the memory kerki¢k,t) as
namical problems to that in evaluating the memory kernel, so
the merits of the new formulation may not be apparent at this K k,t)=g[t7 (k) ]K(k,0), (45)
stage. However, the establishment of the alternative frame- ) o ] ) )
work is strongly biased by a number of physical argumentsWhere the functiorg of a matrix is defined in terms of its
allowing the practical approximation schemes for theTaylor-series expansion. (k) is a matrix that diagonalizes
memory kemnel to solve dynamical problems. The bases of “(K), it follows
such approximation schemes, which are capable of treating _ _ . B
even high-density liquids, were set during the 1970s and the U™ (k)7 (k) U(k) = diag(r,, *(k)), (46)
early 1980s by several researchgt®—-2(Q, and our argu-
ment here is an extension of their work to molecular fluids.
A starting point of our argument is that the memory ker-
nel K(k,t) consists of its fast and slow portions:

whereT;Z(k)’s denote the eigenvalues of the matix?(k),
and diag ) represents a diagonal matrix. Then the fast por-
tion of the memory kernel can be written as

K (K1) = Kas K, ) + K giou(K, ). (40 Kl 1) =UOLdiaglg(t 7 (INIU™ (10K (k0. a7

The fast portion is due to the rapidly decaying binary colli- _

sion contributions(associated with fast collisional evepts B. Slow portion of the memory kernel

and the slow one stems from correlated collisional effects. \We next investigate the long-lasting tails of the memory
We discuss the fast and slow portions of the memory kernekernel exploiting the mode-coupling approach. The basic
separately in the following. For the treatment of the latter,idea behind the mode-coupling theory is that the fluctuation

we employ the mode-coupling approach. of a given dynamical variable decays, at intermediate and
long times, predominantly into pairs of hydrodynamic modes
A. Fast portion of the memory kernel associated with quasiconserved dynamical variables. The

It is reasonable to expect that the initial decay of the fu”pos‘§|ble Qecay chfmnels of a fluctuation are determined
by “selection rules” based, for example, on time-reversal

memory kernel is dominated by its fast portion. Indeed, it mmetry or on physical considerations
has been shown that at sufficiently short times the effects oty MMEtry phy j
It is reasonable to expect that the decay of the memory

Ff;ggags(sgorgsﬁﬁnﬁ'bl:gotﬂz 3:3(:[ mIFe ?ﬁttﬁ; tshhei)r(t)-rtciirﬁre kernel at intermediate and long times is dominated by those
e » UP mode correlations that have the longest relaxation times. The

::%?:;gl,ethaen;wihin?nitt?ael f(?es(t:;)yor;co?hgf f?set ?gr?gr:ycgenmbeelsluggishness of the structural relaxation processes typical of
deduced by analyzing the short-time behavior of the fuIIdense liquids suggests that the slow decay of the memory

memory kernel kernel at long times is basically due to couplings to wave-
At sufficiently short times, the full memory kernkl(k,t) vector-dependent density modes of the form
can be expanded as A\ .(0,p)=p,(Q) 8p ,(P). (49
t2
K(k,t)=K(k,0)+ ol

d_2 K (k,t) Then, the slow portion of the memory kernel can be ex-
dt? ’ pressed as a sum of products of the wave-vector-dependent
density modes provided a decouplifgr factorization ap-
=[1—t27 (k) +---]K(k,0), (41)  proximation is madésee below.
The simplest way to extract the dominant slow portion of
where only even powers of time appear due to the even chathe memory kernel is to introduce another projection opera-

I
t=0

acter ofK(k,t), and we have defined a matrix, tor P, that projects any variable onto the subspace spanned
., L . by A, .(d,p). Translational invariance of the system implies
7 “(k)=—3K(k,00K"*(k,0). (42)  that the onlyA, ,(q,p), whose inner products with a dy-

) o ) namical variableX(k) are nonzero, are of the form
By differentiating Eq.(22) with respect tat repeatedly and

settingt=0, it follows A, .(d,k—q)=6py(aq)bp,(k—Qq), (49
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for variousq’s, and we define the second projection operator L1 .
P, in terms ofA, , as follows: (A A =5 Ix @ ha Iy (k= )]y -
(58)
X(k)=3% AL ALLAG L) TH AL L X(K)),
PaX(k) 2% w;u A B Arr) Ay X(K)) Now let us evaluate the elements of the memory kernel,
(50 Eq. (56). To this end, the explicit expression for the elements

of the projected random force,
where the factor of is to avoid the double counting. From

here on, in order to simplify the notatioA, ,(q,k—q) will Po(R(K))o=P,(j(K)),— ikPo(5p(K)x 1(K)I(K))y
be simply denoted a#,,, and we shall often adopt the (59
convention of writing the wave vectors as if they were dis-

crete. Conversion prescription to the continuous wave vedS required. Evaluation of each term in the above equation is
tors is as follows: somewhat involved, and it is presented in Appendix B. From

the result of Appendix B, it follow$see Eq(B12)]

(2m)* ,
Sk — —y— o(k—k"), (51  PaR(K))q
ip
v -0 2 2 WD) dwu(K) Spr(a) Sp,(k—a),
E - —3 f dk. (52 q Nu
3
x  (2m) (60
In Eq. (50), the inverse is defined by where we have introduced
)\,2, (A)\M,A)\IM!)(AAVM! ,A)\Hﬂn)il:&)\)\rl&“”u. (53) [WC(Q)])\MEE W)\(T(Q)CU,L(Q)- (61)
s p

It is readily verified that?, defined above is idempotent and gy supstituting Eq(60) into Eq. (56) and noting that
Hermitian.

The first approximatio_n of the m_ode-coupli_ng treatment (8p% () 8p% (k=) 8py (', 1) p .0 (K—7' 1))
corresponds to replacing the time-evolution operator
exp(QLt) by its projection on the subspace spanned by ~N2Fy (0,0 F 0 (K=0,t) 8q
AL
M +N2F, L (4OF (K= 0,1) Sqx—qr - (62)
exp(i QL) ~P, exp(i QL) Ps. (54)

under the factorization approximation, one obtains the fol-

At the same time, the anomalous time-propagatorigxgf)  'owing memory kernel:

in the right-hand side is replaced by the conventional one,

the final expression being [Kmet(kit) ]ap
. . p
expli QL) ~P, expli L1)P,. (55) =23 xE J daf{azlwe(a) Iy [we(a)] g,
MV
Under these approximations, the memory kernel in @26)

XFu(@,DFp(k=0q,0)+0z(k—0q;)
X [Wc(q)])\p,[wc(k_ q)],BVF,u,B(Qat)
XF)\v(k_q!t)}‘]a)\(k)v (63)

reads
Kuet(k,t)=(P,R(k),expi Lt)P,R(k))I (k). (56)

The second approximation usually made in the mode-

coupling approach is to assume that the four-variable correwhere we have renamed dummy indices for convenience. In

lation functions are factorized into products of two-variablean appropriate limit, this expression for molecular liquids

correlation functions. For example, the denominator of Eqreduces to that for mixtures of simple liquifz4—24.

(50) reads At this point, it may be tempting to identify the mode-
coupling contribution given by E(63) with the slow por-

1 tion of the full memory kernel. However, as mentioned ear-

(Anp Anrpr) = N (6px(a) 3py, (k=) 5py+(q) 5p,.r (K= 1)) lier, the slow portion should evolve at the ordertdfin the

short-time regime, and we have to manipulate E&) in

1 . order to guarantee this feature: this is exactly the extra price
=~ (9px (@) Spy () we should pay due to the abandonment of the full phase-
space description. Following the work of §j@n[19,20, we
X(6py, (k=) 8p, (k—0q)) introduce the following auxiliary function:
:NX)\)\'(q)X,u,u’(k_q)v (57) Fgﬁ(k,t)
fap(K)=——— (64

and it follows from Eq.(53) that Fopkt)’
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where F‘;B(k,t) denotes an element of the following inter- in terms of the normalized frequency moment matrices of

mediate scattering function matrix: S(k,w) defined in Eq.(34).
) To obtain the slow portion oK5(k,t), we introduce the
FO(k,t)=exd — 3wy Jt2IW(K). (65  following second projection operator for the single-particle

L ) . ) o _variable case:
This intermediate scattering function matrix is essentially
that of a noninteracting molecule. It is readily verified that S
FO(k,t) and F5(k,t) coincide up to the order of? in the PIX(k)=2> 2 / ALLAR LA s (A X(K))s,
short-time regime by construction. It is also obvious that the R 73
former decays more rapidly than the latter, which has the
long-lasting portior{see below Thus, the auxiliary function \whereA$  is defined by
defined in Eq(64) satisfies the following relations: K’

A =6p3(q)dp,(k—q). 74

f.p(k,t)=1 (up to the order oft? for t<1), (66) xu=0Px(A)9p,(k=0) 749
_ Note the absence of the factdin the above equation com-

lim f,5(k,t)=0. (67 pared to Eq.(50). The inverse AiM,Ai,M,)S_l is defined

t—oo

similarly to Eq.(53), and in the present case, it follows under

It should be also noticed thdt,z(k,t) is symmetric since the factorization approximation that

Fgﬂ(k,t) andFZB(k,t) are symmetric matrices. By inserting 1

this au_xil_iary function into Eq(63) according to Sjgren's (Aiu’Aiw);l:ﬁ [W—l(q)]w[x—l(k_q)]w,_
prescription, we eventually obtain the slow portion of the

memory kernel that evolves at the ordertéfin the short- (75

time regime: Using the projection operatd?;, the memory kernel reads,
[Ksion(K,)ag as in Eq.(56),
p Kyer(k,t) = (P3RS(k), expi L) P5RS(K))sd (k).
s 3 [ dajadiwola ], wotal,, = e
(277) N, v
X[1—f, (a0 Fys(K— ) TF (a0 F g(k—q,t The evaluation of the elements of the projected random
[ wl @O (k= DIF,L(A.UF gk =a.t) force P5(R%(k)),, can be performed by a similar procedure to
+d(k=a[we(a) ]y Lwek—=a) ], that employed in Appendix B, the final result being
X[1=f,50a,0)f,(k=q,t)] ip
Pa(R(K)o=— - 2 2 (k=0 )[we(k—q)
X (4D (k= 0,01 (K). (69 : N 5 g (KD,
Numerical results for F(k,t) can be obtained self- X Ion (k) 8p3(q) Sp . (k—0). (77)

consistently by solving Eq<22), (40), (47), and (68), pro- o . o .
vided the “equilibrium structure functions of liquids are BY Substituting this equation into E76) and adopting the
known. factorization approximation for four-variable correlation

functions, one obtains the following memory kernel under

C. Single-particle variable case the mode-coupling approach:

The single-particle counterpart can be obtained by a simi- p )
lar procedure. The fast portion of the memory ketdé(k,t) [KMCT(k't)]aﬁ:(ZW)3 x%y da(k—qz)Twelk=a) ]y,
reads "

k— FS (q,
K (K, 1) = Ug(K)[diag( g (t/ 75 o(k)))JU5 1(K)K3(K,0). XLwetk=a)lgFigla.t)

(69) X F,uv(k_Qit)‘]a)\(k)' (78)
In the above equation;;ﬁ(k)’s are the eigenvalues of the In order to obtain the slow portion of the memory kernel,
matrix 7; 2(k) defined by which evolves at the order of in the short-time regime, we
) manipulate this expression as in E@8) using the same
72 2(k)=— 1KS(k,0[K3(k,0)]7%, (700 auxiliary function defined by Eq64):

andUg(k) is a matrix that diagonalizeg %(k). The matrices [KSow(K:D)]ap
appearing in the right-hand side of E{0) can be ex-
pressed, as in Eq$43) and(44), as __F 2 dq(k—qz)z[wc(k—q)]w

(23
KkO)=(wf i ~(afd, (7D (@m” e
: : , X[we(k—a)]g,[1- (0,0, (k—a,t) IF3 5(a,t)

—KS(k,0) = (g H(wf ) 1~ (wp Hwi ) M2 (72 XF (k=003 (K). (79
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Numerical results for the single-partick(k,t) can be ob- (8pr(a) 8p . (k—1),8p,(K))
tained self-consistently by solving Eq85), (40), (69), and

1
(79, = 5 (803 (@ 0p% (k=) 3p,(K)),  (AL)

V. CONCLUDING REMARKS in terms of two-site correlation functionsv, (k) and
) ) ) ) h,.(K). To this end, we generalize the convolution approxi-
In this paper, we derived closed nonlinear equations for Q.nation’ emp|0yed in mode_coup”ng approaches for Simp]e
self-consistent treatment of density propagation in a classicalquids [29] and mixtures of simple liquid§24], to poly-
polyatomic liquid based on the projection-operator formal-atomic liquids. We first note that the right-hand side of Eq.
ism of Zwanzig and Mori and on the mode-coupling theory.(A1) can be rearranged into
A distinctive feature of our formulation is that it is based on
the interaction-site model for molecular liquids, and is ca- (8py (q) 8p};(k—q) dp,(k))
pable of treating the general class of polyatomic fluids with-
out too much difficulty. This is in contrast to other theories _ ~ig-r} —i(k—q)-rt iK.r?
for dynamics of molecular liquids based on the rotational- z.: © 2,: © JZ e (A2)
invariant expansiong27,2§, in which theories become

much more complicated when there is no symmetry in a =(i=j=)+(i=]#)+(j=1#1i)
molecule. o L
Numerical results foF(k,t) can be obtained by solving H(=i=+#]#). (A3)

Egs.(22), (40), (47), and(68), and corresponding results for L .
the self part can be evaluated similarly. We have calculatec]—h(.a ter_m (=j=1) symbolically den_otgs the case where
=j=Iin Eq.(A2), and others have similar meanings except

site-site intermediate scattering functions, longitudinal cur- i) hich . th here i i
rent spectra, velocity autocorrelation functions and thei i: (zlano{h&i), which summarizes the case wherej, |

spectra for model diatomic liquid based on the present for- . . .
P d P The term {(=j=I1) may be called intramolecular triplet

mulation, and found fairly good agreement with molecular- . ) . .
dynamics simulation resuilts. These calculations will be re.correlation function since only one molecule is involved. The

ported in a forthcoming paper. terms i=j#lI), (j_=|¢i), and q=i_¢j) will be r.eferred to
Although our primary aim in the present paper is to de-2S intracoupled intermolecular triplet correlation functions
velop a molecular theory for dynamics of the ordinary liquid "W1ere wo different molecules are concerned, one of which
state, our formalism based on the mode-coupling theory cafiifers two sites. We call the final term £j#1) intermo-
also be used to investigate the nature of the supercooled st geular triplet correlation function to which three different

and the glass transition of molecular liquids. The research fofiolecules contribute. An approximation scheme for each
this direction is one of our concems in the future study. class of triplet correlation functions is separately investigated
in the following.

a.(i=j=I) termin Eq. (A2)

We first consider thei&j=1) term in Eq.(A2), which
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Molecular Science. — N<e—iq~r}ie—i(k—q)~r‘l‘eik~r{>

=N[(A=u=v)+(A=p#v)+(u=v#N\)
APPENDIX A: APPROXIMATIONS
+(v=A#Fu)+ANFu#v)]. (A4)

FOR TRIPLET CORRELATIONS

In this appendix, we develop approximation schemes for! he first four terms are readily evaluated in terms of site-site
triplet correlations that are required in evaluating thecorrelation functions, the results being
memory kernel under the mode-coupling approach. It should

be remembered that, in the present paper, the greek sub- A=p=v)=6\,0,,, (A5)
scripts and superscripts refer to the interaction sites of a mol- ~
ecule, and the roman letters label the molecules. It is as- (N=p#v)=6),8,,(K), (A6)

sumed in the following thaty#0, k—g#0, andk+#0, and

the thermodynamic limit is also anticipated. where we have definegbee also Eq(13)]

Siu(K)=(1=8),)8,u(K). (A7)
1. Convolution approximation The terms fe=v#\) and (»=\+#u) have expressions
We investigate here how to approximate tripléiree- similar to Eq.(A6). The last term in Eq(A4) is a triplet
site) correlations, correlation. Defining
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(1,11 =(1= 8, (1= 8,,) (1= 8,)(3(r —r})

(i=j=h= 2 e-ia-r g-itk=a) rlgiker!
X a(r' =r{)a(r" =), (A8) .

the last term in Eq(A4) can be expressed as ”N; Wy o (W, (K= aW,5(K),  (AL5)

i o where we have used E(L3).
()\i,u;tv)zJ'dre' 'rfdr’e a-r
b. (i=j#1) term in Eq. (A2)

fdr/”(3> (r+r",r +r",r" We next consider thei&j#1) term in Eq.(A2). The
V)\,u ' ' . . ..
terms represented by€I1+#i) and (=i#j) can be treated
in a similar manner. Thei&j#1) term can be further de-
—Vf drf drrekre 1SR (r,r), composed into
(Ag) —ig.-rt fer?
e iarigi i(k—q)- r e|k-rI
Ei: 1#i
where we have noticed the translational invariance of the
system. _ —ikertaikerf ) 41—
To approximate this in terms of two-site correlation func- 5*“<§i: = € € > (1=,
tions, we introduce the following convolution approxima-
tion: ><<2 o0 g-itk—a)r¥ eik»rl">
i 1#i
SR, r)=5,,(N8 (18, (r =)

w(D9AT)S =(\=p)+(\#p). (A16)
=t (Dt L (r )t (r—r’
pa(D (A ) The term § = u) is easily evaluated using E¢L2):
1 ~ ~
+§ vfdr”tw(r o1 =r")) (M=) =N&, ,phy,(K). (AL7)

XT,.(r=r")), (A10)  To evaluate the term\# ), let us define the following
triplet correlation function:

where we have defined p ggfg(r,r’,r”)z(l— Ouv)
~ - 1
bu(D=80,(1) = - (Al11) ; S(r—r})s(r' —rt)s(r"—r})
Ey

. . . . . A18
Note that the triplet correlation function under this approxi- (A18)

mation satisfies the relation The underline fv) emphasizes that these two sites are
within the samé molecule, and the factet indicates that

~ IR =3 o AL2 two different molecules are involved here. Then, the second
Siullr=r'))= SN (rrr), (A12) term in Eq.(A16) can be written, as in EqA9), as
and similar relations with subscripts or variables of integra- (?\¢M)=pr drf dr/eik-refiq-r’gl(3)(r (.
tion appropriately interchanged. Then, it follows from Egs. At
(A9) and (A10) that (A19)
~ ~ ~ ~ An approximation of Eq(A19) in terms of site-site cor-
(A F 7 1) =t (DL (K) + ()t (k—q) relation functions can be achieved by introducing the follow-
+Txﬂ(k—Q)TVx(k) ing convolution approximation:

9T~ (BT g (r=r]")

+ 2 Dol Dluok—)Eo(k).  (AL3) ’
7 _hv;/,(r)t)\;/,(rl)hv)\(“_r,l)
By noting that +E J dr’qﬂg(r”ﬁ';\o—(“, —r"|)hm(|r—r"|).

1)K =3, ,(K), (Al14) (A20)

in k space wherk+0, substituting Eqs(A5), (A6), and Itis readily verified that the triplet correlation function under
(A13) into Eq. (A4) yields this approximation satisfies the sequential conditions
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g'd (r,r")
gn(lr=r'h= J’df”gym(f rr', (n21) I
%gv,u(r)g)\,u,(r/)gv)\(lr_r,|)_hv,u,(r)h}\p,(r’)
Syu(lr=r” fdrg’v(f;j(rr M. (A22) ><hm(|f—r'|)+ﬂ2r dr”h,,(r")hye(Ir" =r"])

Xh,(fr=r")+2 fdr’% AT =)
Then, from Eqgs.(A19) and (A20), it is straightforward to | | o # rol |

derive
Xh,(fr=r")+2 fdr”h,,,g(r”)gm(lr’—r")
(N ) =N, (k=) ph, () +1, 4 (@) ph,,(K)
Xh,e(Ir=r")+2 fdr”hw(r”)hw(lf’—f”l)
hox(ah,,(k—a) X3,.([r=r"]). (A27)
Notice that the triplet correlation function under this approxi-
+E tro ()T 0 (k= Q)Phw(k)} (A23)  mation satisfies the sequential condition
p n ! n
Oullr=r'D=g=5 | drov.(rr'r).  (A28)
Substituting Eqs(Al17) and (A23) into Eq. (A16) finally
gives Then, from Eqs(A26) and (A27), one obtains
L R S -
i£i#1)= eflq-riefl(qu)w-elk-r|
(|:]7&|): 2 e—iq-ri”e i(k—=q)-r; 2 eik-rr> ( J ) <i9;¢| :
i 1#i

~N [Wy(q)ph,o(k—a)ph,q(k)+ phy,(q)
~N2 Wy (W, (k=) ph,g(k), (A24) v

XW,u,o'(k_ Q)thr(k) +ph)\(r(q)ph,uo'(k_ q)

where we have used Eq4.3) and (A14). XW,o(K) + phyo(a) ph o (k= a) phye(K) ],
(A29)
c. (i#j#1) termin Eq. (A2)

Finally, an approximation fori¢ j#1) term in Eq.(A2)
is investigated here. For this purpose, the following triplet
correlation function is defined: Under the convolution approximations discussed in the
previous parts, it eventually follows from Eq#3), (A15),
(A24), and(A29) that

where Eq.(13) has been used.
d. Summary of Eq. (A2)

v <E| 2\ 2 Sr=r)alr —rf) (8pr(@) 3p,.(k—0), 6, (K))
1
><5(r”—r,)> (A25) = < (507 (@) 595 (k=) 3p, ()
~ 2 XD X (K= DX (K, (A30)

where the factop? indicates that three different molecules
are involved. Then,i@j+1) term in Eq.(A2) can be ex-

pressed, as in Eq§A9) and (A19), as where we have used E(LO).

2. Triplet correlations involving velocity fields

<_ > eiq‘fixei(kq)'rfbeik‘ff> This subsection deals with the triplet correlations involv-
i#j# ing one density and two velocity fields. We first consider the

following triplet correlation:
— 2 raik-ra—ig-r’ §(3) ’ ) )
g2 [ ar [ arrere e . a20 (5% (@15 (k=] (K). (A3D)

Due to the statistical independence of the translational and
We introduce the following convolution approximation for rotational velocities, by employing the notation in Etf7), it

gl (r.r): follows that
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SpX ()it (k—q)j,(k : :
o @I ) Poia0=33 3 ALAL A A aK).

<2 e-iar E (U )2 )-rt gik-r > o (B1
The numerator can be expressed as
N
+<§|: ef'q'”; [ ;X o1, (5px(0|)5pﬂ(k a).J oK)
— _ C % * _ -
X[wjxéerV]Zei(kq)-r]-“eik-rj”>_ (A32) N <5PA(Q)5PM(|< D) o(k))

1
o * C % _ H
The first term is readily evaluated, using the results of the N (opX (@) Pl (k= )a(k))

convolution approximation, Eq$A15) and (A24), and not-
ing the statistical independence of the translational velocities
and coordinates, as follows: =102y N <5p“(k DIX(@]a(k))

1
S gianS (v?z)zei<kq>-rf‘eik-rr> +i(k=ay) § (opX (D] (k=a)ja(k)),
i j '
(B2)

%NE;, Xna(DW,uo (k=) I5TK), (A33)  where we have used the well-known relation
(AB)=—(AB), and the continuity equation Ed3). The
evaluation of the above equation requires the knowledge of
the triplet correlation functions involving one density and
wo longitudinal velocity fields, an approximation for which
presented in the Appendix A. Using E@\34), it follows

WhereJ”a”s(k) is defined in Eq(19).

The evaluat|on of the second term in EA32) is a non-
trivial problem, and we assume it to have the same functlonq
form as Eq.(A33). Then, one has

that
. . ) 8p,(K—0),j (K
(S (@ (k=D KD=NZ o DW (k= ), (K. (@or(a)2p, (k=) ] (k)
(A34) ~i0,2 Xuo(K= )Wy (@) 40 (K)
Expressions for two other similar triplet correlation func-
tions are required in the main text. These correlation func- +i(k—qz)2 o DW (K= ) Iy 6(K).
tions can be approximated within the same spirit as above, v
the final results being (B3)

By substituting this into Eq(B1) and using Eq(58), one
(BpX (@I (k= i3k}~ 2 Xao(@Wuo(k=a)Jue(k),  obtains

A35

(A3 k= E S @A @D (@30
(8oX (@] 5 (k= @5k}~ 2 W o (AW (k=0)3,0(K). +(k—qz)AM[X*1(k—q)],w

(A36) X W (K= ) (K)}. (B4)

It can be easily shown that the first and second term in the

APPENDIX B: EVALUATION OF THE PROJECTED above equation are equal to each other, and it follows that

RANDOM FORCE

In this appendix, we briefly outline the derivation of the ~P2) «(K)= E 2 AAN XD oW (A) I (K).
expression for the projected random force for the collective (B5)
variable case: the single-particle counterpart can be derived
by a similar procedure. For simplicity, we shall often adopt We next evaluate the second term in the right-hand side of
in the following the notation ofA,, defined by Eq.(49). Eq. (59 under the convolution approximation developed in
(Note thatA, , is not symmetric with respect to the inter- the Appendix A:
change of subscripts. However, when the wave veaiansd -1
k—q are interchanged, so are the subscripiéso, we may Padp(k)x (k) I(k)a
rearrange or rename dummy indices arbitrarily without any B
indication. =2, (P2p, (KDL (K)]55d5u(K).  (BS)

Let us evaluate the first term in the right-hand side of Eq. 70
(59): It follows from Egs.(58) and (A30) that
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P26p,(K)=

N| =

2 2 AuALAL) T
q }\,,u,,)\’,p,’
X(5P>\’(q)5p,u/(k_Q):‘Spy(k))
1
=N 2 2 A (k). (B7)
Substituting this into Eq(B6) yields

1
Pa(ap(x 1(0I(K)e=5 2 2 Andan(K)- (BY)

It is more convenient to rewrite this equation in the follow-

ing form:
ikP,(8p(k)x~ (k) I(K)),

:ZI_N 2 2 {qz+(k_qz)}AM\‘Ja)\(k)
q A

; 2 G AW (K)

Z| -

= > A an(K) Sy, (B9)

q Mu

Z| -
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Finally, we combine Egs(B5) and (B9) to obtain the
expression fofP,(R(K)),:

[
PrRKDa=15 2 2 GAvuau(K)
q Nu
X| 2 I M@ oWou(@) = Sy, |. (B0
The quantities in the parentheses read, using(Eg),

; [x~ @) IhoWen (@)= 8y .= — p[We(A) ]
(B11)

where the matrix elemernwc(k) ], , is defined in Eq(61).
Substituting this into Eq(B10) eventually gives

i
PaR(KD= =1 2 T awe(a))n

XJau(K)Opr(@)Op,(k—0q).  (B12)
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